The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “R-Schauder decompositions. Some applications.”

On non-primary Fréchet Schwartz spaces

J. Díaz (1997)

Studia Mathematica

Similarity:

Let E be a Fréchet Schwartz space with a continuous norm and with a finite-dimensional decomposition, and let F be any infinite-dimensional subspace of E. It is proved that E can be written as G ⨁ H where G and H do not contain any subspace isomorphic to F. In particular, E is not primary. If the subspace F is not normable then the statement holds for other quasinormable Fréchet spaces, e.g., if E is a quasinormable and locally normable Köthe sequence space, or if E is a space of holomorphic...

Preduals of spaces of vector-valued holomorphic functions

Christopher Boyd (2003)

Czechoslovak Mathematical Journal

Similarity:

For U a balanced open subset of a Fréchet space E and F a dual-Banach space we introduce the topology τ γ on the space ( U , F ) of holomorphic functions from U into F . This topology allows us to construct a predual for ( ( U , F ) , τ δ ) which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic...

Holomorphic functions on strict inductive limits of Banach spaces.

Seán Dineen, Luiza A. Moraes (1992)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

In this article we show that a number of apparently different properties coincide on the set of holomorphic functions on a strict inductive limit (all inductive limits are assumed to be countable and proper) of Banach spaces and that they are all satisfied only in the trivial case of a strict inductive limit of finite dimensional spaces. Thus the linear properties of a strict inductive limit of Banach spaces rarely translate themselves into holomorphic properties.