The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Characteristically nilpotent Lie Algebras: a survey.”

Solvable extensions of a special class of nilpotent Lie algebras

A. Shabanskaya, Gerard Thompson (2013)

Archivum Mathematicum

Similarity:

A pair of sequences of nilpotent Lie algebras denoted by N n , 11 and N n , 19 are introduced. Here n denotes the dimension of the algebras that are defined for n 6 ; the first term in the sequences are denoted by 6.11 and 6.19, respectively, in the standard list of six-dimensional Lie algebras. For each of N n , 11 and N n , 19 all possible solvable extensions are constructed so that N n , 11 and N n , 19 serve as the nilradical of the corresponding solvable algebras. The construction continues Winternitz’ and colleagues’ program...

Maximal solvable extensions of filiform algebras

Libor Šnobl (2011)

Archivum Mathematicum

Similarity:

It is already known that any filiform Lie algebra which possesses a codimension 2 solvable extension is naturally graded. Here we present an alternative derivation of this result.

About a family of naturally graded no p-filiform Lie algebras.

L. M. Camacho, J. R. Gómez, A. J. González (2005)

Extracta Mathematicae

Similarity:

The knowledge of the natural graded algebras of a given class of Lie algebras offers essential information about the structure of the class. So far, the classification of naturally graded Lie algebras is only known for some families of p-filiform Lie algebras. In certain sense, if g is a naturally graded Lie algebra of dimension n, the first case of no p-filiform Lie algebras it happens when the characteristic sequence is (n-3,2,1). We present the classification of a particular family...