The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Calderón's problem for Lipschitz classes and the dimension of quasicircles.”

Moduli of certain Fano 4-folds.

Walter L. Baily Jr. (2001)

Revista Matemática Iberoamericana

Similarity:

In this brief note we give a proof that a certain family of Fano 4-folds, described below, is complex (locally) complete and effectively parametrized in the sense of Kodaira-Spencer [Ko-Sp].

Quasicircles modulo bilipschitz maps.

Steffen Rohde (2001)

Revista Matemática Iberoamericana

Similarity:

We give an explicit construction of all quasicircles, modulo bilipschitz maps. More precisely, we construct a class of planar Jordan curves, using a process similar to the construction of the van Koch snowflake curve. These snowflake-like curves are easily seen to be quasicircles. We prove that for every quasicircle Γ there is a bilipschitz homeomorphism f of the plane and a snowflake-like curve S ∈ with Γ = f(). In the same fashion we obtain a construction of all bilipschitz-homogeneous...

The boundary absolute continuity of quasiconformal mappings (II).

Juha Heinonen (1996)

Revista Matemática Iberoamericana

Similarity:

In this paper a quite complete picture is given of the absolute continuity on the boundary of a quasiconformal map B → D, where B is the unit 3-ball and D is a Jordan domain in R with boundary 2-rectifiable in the sense of geometric measure theory. Moreover, examples are constructed, for each n ≥ 3, showing that quasiconformal maps from the unit n-ball onto Jordan domains with boundary (n - 1)-rectifiable need not have absolutely continuous boundary values.

Quasiconformal mappings with Sobolev boundary values

Kari Astala, Mario Bonk, Juha Heinonen (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We consider quasiconformal mappings in the upper half space + n + 1 of n + 1 , n 2 , whose almost everywhere defined trace in n has distributional differential in L n ( n ) . We give both geometric and analytic characterizations for this possibility, resembling the situation in the classical Hardy space H 1 . More generally, we consider certain positive functions defined on + n + 1 , called conformal densities. These densities mimic the averaged derivatives of quasiconformal mappings, and we prove analogous trace theorems...