The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Weak-type estimates for the Riesz transforms associated with the Gaussian measure.”

The higher order Riesz transform for Gaussian measure need not be of weak type (1,1)

Liliana Forzani, Roberto Scotto (1998)

Studia Mathematica

Similarity:

The purpose of this paper is to prove that the higher order Riesz transform for Gaussian measure associated with the Ornstein-Uhlenbeck differential operator L : = d 2 / d x 2 - 2 x d / d x , x ∈ ℝ, need not be of weak type (1,1). A function in L 1 ( d γ ) , where dγ is the Gaussian measure, is given such that the distribution function of the higher order Riesz transform decays more slowly than C/λ.

Riesz transform on manifolds and Poincaré inequalitie

Pascal Auscher, Thierry Coulhon (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We study the validity of the L p inequality for the Riesz transform when p > 2 and of its reverse inequality when 1 < p < 2 on complete riemannian manifolds under the doubling property and some Poincaré inequalities.

Riesz means of Fourier transforms and Fourier series on Hardy spaces

Ferenc Weisz (1998)

Studia Mathematica

Similarity:

Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from H p ( ) to L p ( ) (1/(α+1) < p < ∞) and is of weak type (1,1), where H p ( ) is the classical Hardy space. As a consequence we deduce that the Riesz means of a function L 1 ( ) converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on H p ( ) whenever 1/(α+1) < p < ∞. Thus, in case H p ( ) , the Riesz...