Riesz transform on manifolds and Poincaré inequalitie

Pascal Auscher[1]; Thierry Coulhon[2]

  • [1] Laboratoire de Mathématiques CNRS, UMR 8628 Université de Paris-Sud 91405 Orsay Cedex, France
  • [2] Département de Mathématiques Université de Cergy-Pontoise 2 rue Adolphe Chauvin 95302 Pontoise Cedex, France

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 3, page 531-555
  • ISSN: 0391-173X

Abstract

top
We study the validity of the L p inequality for the Riesz transform when p > 2 and of its reverse inequality when 1 < p < 2 on complete riemannian manifolds under the doubling property and some Poincaré inequalities.

How to cite

top

Auscher, Pascal, and Coulhon, Thierry. "Riesz transform on manifolds and Poincaré inequalitie." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.3 (2005): 531-555. <http://eudml.org/doc/84570>.

@article{Auscher2005,
abstract = {We study the validity of the $L^p$ inequality for the Riesz transform when $p&gt;2$ and of its reverse inequality when $1&lt;p&lt;2$ on complete riemannian manifolds under the doubling property and some Poincaré inequalities.},
affiliation = {Laboratoire de Mathématiques CNRS, UMR 8628 Université de Paris-Sud 91405 Orsay Cedex, France; Département de Mathématiques Université de Cergy-Pontoise 2 rue Adolphe Chauvin 95302 Pontoise Cedex, France},
author = {Auscher, Pascal, Coulhon, Thierry},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {531-555},
publisher = {Scuola Normale Superiore, Pisa},
title = {Riesz transform on manifolds and Poincaré inequalitie},
url = {http://eudml.org/doc/84570},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Auscher, Pascal
AU - Coulhon, Thierry
TI - Riesz transform on manifolds and Poincaré inequalitie
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 3
SP - 531
EP - 555
AB - We study the validity of the $L^p$ inequality for the Riesz transform when $p&gt;2$ and of its reverse inequality when $1&lt;p&lt;2$ on complete riemannian manifolds under the doubling property and some Poincaré inequalities.
LA - eng
UR - http://eudml.org/doc/84570
ER -

References

top
  1. [1] P. Auscher, On L p -estimates for square roots of second order elliptic operators on n , Publ. Mat. 48 (2004), 159-186. Zbl1107.42003MR2044643
  2. [2] P. Auscher, T. Coulhon, X. T. Duong and S. Hofmann, Riesz transforms on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup. 37 (2004), 911-95. Zbl1086.58013MR2119242
  3. [3] P. Auscher and J.-M. Martell, Weighted norm inequalities off-diagonal estimates and elliptic operators: Part I, preprint 2005. MR2664561
  4. [4] P. Auscher and P. Tchamitchian, “Square Root Problem for Divergence Operators and Related Topics”, Astérisque, 249, 1998. Zbl0909.35001MR1651262
  5. [5] D. Bakry, Transformations de Riesz pour les semi-groupes symétriques, Seconde partie: étude sous la condition Γ 2 0 , In: “Séminaire de Probabilités XIX”, Lect. Notes Math., Vol. 1123, Springer-Verlag, 1985, 145–174. Zbl0561.42011MR889473
  6. [6] S. Blunck and P. Kunstmann, Calderón-Zygmund theory for non-integral operators and the H functional calculus, Rev. Mat. Iberoamericana 19 (2003), 919–942. Zbl1057.42010MR2053568
  7. [7] G. Carron, T. Coulhon and A. Hassell, Riesz transform and L p cohomology for manifolds with Euclidean ends, Duke Math. J., to appear. Zbl1106.58021MR2219270
  8. [8] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645. Zbl0358.30023MR447954
  9. [9] T. Coulhon and X. T. Duong, Riesz transforms for 1 p 2 , Trans. Amer. Math. Soc. 351 (1999), 1151–1169. Zbl0973.58018MR1458299
  10. [10] T. Coulhon and X. T. Duong, Riesz transform and related inequalities on non-compact Riemannian manifolds, Comm. Pure Appl. Math. 56, 12 (2003), 1728–1751. Zbl1037.58017MR2001444
  11. [11] T. Coulhon and H. Q. Li, Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz, Arch. Math. 83 (2004), 229–242. Zbl1076.58017MR2108551
  12. [12] B. Franchi, C. Pérez and R. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), 108–146. Zbl0892.43005MR1609261
  13. [13] F. W. Gehring, The L p -integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. Zbl0258.30021MR402038
  14. [14] M. Giaquinta, “Multiple Integrals in the Calculus of Variations and Non-linear Elliptic Systems”, Annals of Math. Studies, vol. 105, Princeton Univ. Press, 1983. Zbl0516.49003MR717034
  15. [15] A. Grigor’yan, Stochastically complete manifolds, (Russian) Dokl. Akad. Nauk SSSR 290 (1986), 534–537. Zbl0632.58041MR860324
  16. [16] A. Grigor’yan, Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold, J. Funct. Anal. 127 (1995), 363–389. Zbl0842.58070MR1317722
  17. [17] A. Grigor’yan and L. Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble) 55 (2005), 825–890. Zbl1115.58024MR2149405
  18. [18] P. Hajłasz and P. Koskela, “Sobolev Met Poincaré”, Mem. Amer. Math. Soc., Vol. 145, no. 688, 2000. Zbl0954.46022MR1683160
  19. [19] S. Hofmann and J.-M. Martell, L p bounds for Riesz transforms and square roots associated to second order elliptic operators, Publ. Mat. 47 (2003), 497–515. Zbl1074.35031MR2006497
  20. [20] T. Iwaniec, The Gehring lemma, In: “Quasiconformal Mappings and Analysis” (Ann. Arbor, MI, 1995), Springer, New York, 1998, 181–204. Zbl0888.30017MR1488451
  21. [21] S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, preprint 2003. Zbl1180.46025MR2415381
  22. [22] Li Hong-Quan, La transformation de Riesz sur les variétés coniques, J. Funct. Anal. 168 (1999), 145–238. Zbl0937.43004MR1717835
  23. [23] J.-M. Martell, PhD thesis, Universidad Autónoma de Madrid, 2003. 
  24. [24] N. G. Meyers, An L p estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 189–206. Zbl0127.31904MR159110
  25. [25] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27–38. Zbl0769.58054MR1150597
  26. [26] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Anal. (4), 4 (1995), 429–467. Zbl0840.31006MR1354894
  27. [27] Z. Shen, Bounds of Riesz transforms on L p spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble) 55 (2005), 173-197. Zbl1068.47058MR2141694
  28. [28] E. M. Stein, “Singular Integrals and Differentiability Properties of Functions”, Princeton Univ. Press, 1970. Zbl0207.13501MR290095
  29. [29] E. M. Stein, “Topics in Harmonic Analysis Related to the Littlewood-Paley Theory”, Princeton Univ. Press, 1970. Zbl0193.10502MR252961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.