Riesz transform on manifolds and Poincaré inequalitie
Pascal Auscher[1]; Thierry Coulhon[2]
- [1] Laboratoire de Mathématiques CNRS, UMR 8628 Université de Paris-Sud 91405 Orsay Cedex, France
- [2] Département de Mathématiques Université de Cergy-Pontoise 2 rue Adolphe Chauvin 95302 Pontoise Cedex, France
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 3, page 531-555
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topAuscher, Pascal, and Coulhon, Thierry. "Riesz transform on manifolds and Poincaré inequalitie." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.3 (2005): 531-555. <http://eudml.org/doc/84570>.
@article{Auscher2005,
abstract = {We study the validity of the $L^p$ inequality for the Riesz transform when $p>2$ and of its reverse inequality when $1<p<2$ on complete riemannian manifolds under the doubling property and some Poincaré inequalities.},
affiliation = {Laboratoire de Mathématiques CNRS, UMR 8628 Université de Paris-Sud 91405 Orsay Cedex, France; Département de Mathématiques Université de Cergy-Pontoise 2 rue Adolphe Chauvin 95302 Pontoise Cedex, France},
author = {Auscher, Pascal, Coulhon, Thierry},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {531-555},
publisher = {Scuola Normale Superiore, Pisa},
title = {Riesz transform on manifolds and Poincaré inequalitie},
url = {http://eudml.org/doc/84570},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Auscher, Pascal
AU - Coulhon, Thierry
TI - Riesz transform on manifolds and Poincaré inequalitie
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 3
SP - 531
EP - 555
AB - We study the validity of the $L^p$ inequality for the Riesz transform when $p>2$ and of its reverse inequality when $1<p<2$ on complete riemannian manifolds under the doubling property and some Poincaré inequalities.
LA - eng
UR - http://eudml.org/doc/84570
ER -
References
top- [1] P. Auscher, On -estimates for square roots of second order elliptic operators on , Publ. Mat. 48 (2004), 159-186. Zbl1107.42003MR2044643
- [2] P. Auscher, T. Coulhon, X. T. Duong and S. Hofmann, Riesz transforms on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup. 37 (2004), 911-95. Zbl1086.58013MR2119242
- [3] P. Auscher and J.-M. Martell, Weighted norm inequalities off-diagonal estimates and elliptic operators: Part I, preprint 2005. MR2664561
- [4] P. Auscher and P. Tchamitchian, “Square Root Problem for Divergence Operators and Related Topics”, Astérisque, 249, 1998. Zbl0909.35001MR1651262
- [5] D. Bakry, Transformations de Riesz pour les semi-groupes symétriques, Seconde partie: étude sous la condition , In: “Séminaire de Probabilités XIX”, Lect. Notes Math., Vol. 1123, Springer-Verlag, 1985, 145–174. Zbl0561.42011MR889473
- [6] S. Blunck and P. Kunstmann, Calderón-Zygmund theory for non-integral operators and the functional calculus, Rev. Mat. Iberoamericana 19 (2003), 919–942. Zbl1057.42010MR2053568
- [7] G. Carron, T. Coulhon and A. Hassell, Riesz transform and cohomology for manifolds with Euclidean ends, Duke Math. J., to appear. Zbl1106.58021MR2219270
- [8] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645. Zbl0358.30023MR447954
- [9] T. Coulhon and X. T. Duong, Riesz transforms for , Trans. Amer. Math. Soc. 351 (1999), 1151–1169. Zbl0973.58018MR1458299
- [10] T. Coulhon and X. T. Duong, Riesz transform and related inequalities on non-compact Riemannian manifolds, Comm. Pure Appl. Math. 56, 12 (2003), 1728–1751. Zbl1037.58017MR2001444
- [11] T. Coulhon and H. Q. Li, Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz, Arch. Math. 83 (2004), 229–242. Zbl1076.58017MR2108551
- [12] B. Franchi, C. Pérez and R. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), 108–146. Zbl0892.43005MR1609261
- [13] F. W. Gehring, The -integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. Zbl0258.30021MR402038
- [14] M. Giaquinta, “Multiple Integrals in the Calculus of Variations and Non-linear Elliptic Systems”, Annals of Math. Studies, vol. 105, Princeton Univ. Press, 1983. Zbl0516.49003MR717034
- [15] A. Grigor’yan, Stochastically complete manifolds, (Russian) Dokl. Akad. Nauk SSSR 290 (1986), 534–537. Zbl0632.58041MR860324
- [16] A. Grigor’yan, Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold, J. Funct. Anal. 127 (1995), 363–389. Zbl0842.58070MR1317722
- [17] A. Grigor’yan and L. Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble) 55 (2005), 825–890. Zbl1115.58024MR2149405
- [18] P. Hajłasz and P. Koskela, “Sobolev Met Poincaré”, Mem. Amer. Math. Soc., Vol. 145, no. 688, 2000. Zbl0954.46022MR1683160
- [19] S. Hofmann and J.-M. Martell, bounds for Riesz transforms and square roots associated to second order elliptic operators, Publ. Mat. 47 (2003), 497–515. Zbl1074.35031MR2006497
- [20] T. Iwaniec, The Gehring lemma, In: “Quasiconformal Mappings and Analysis” (Ann. Arbor, MI, 1995), Springer, New York, 1998, 181–204. Zbl0888.30017MR1488451
- [21] S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, preprint 2003. Zbl1180.46025MR2415381
- [22] Li Hong-Quan, La transformation de Riesz sur les variétés coniques, J. Funct. Anal. 168 (1999), 145–238. Zbl0937.43004MR1717835
- [23] J.-M. Martell, PhD thesis, Universidad Autónoma de Madrid, 2003.
- [24] N. G. Meyers, An estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 189–206. Zbl0127.31904MR159110
- [25] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27–38. Zbl0769.58054MR1150597
- [26] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Anal. (4), 4 (1995), 429–467. Zbl0840.31006MR1354894
- [27] Z. Shen, Bounds of Riesz transforms on spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble) 55 (2005), 173-197. Zbl1068.47058MR2141694
- [28] E. M. Stein, “Singular Integrals and Differentiability Properties of Functions”, Princeton Univ. Press, 1970. Zbl0207.13501MR290095
- [29] E. M. Stein, “Topics in Harmonic Analysis Related to the Littlewood-Paley Theory”, Princeton Univ. Press, 1970. Zbl0193.10502MR252961
Citations in EuDML Documents
top- Peter Sjögren, Maria Vallarino, Boundedness from to of Riesz transforms on a Lie group of exponential growth
- Steve Hofmann, Svitlana Mayboroda, Alan McIntosh, Second order elliptic operators with complex bounded measurable coefficients in , Sobolev and Hardy spaces
- Pascal Auscher, Thierry Coulhon, Xuan Thinh Duong, Steve Hofmann, Riesz transform on manifolds and heat kernel regularity
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.