Displaying similar documents to “Hyperbolic singular integral operators.”

The angular distribution of mass by Bergman functions.

Donald E. Marshall, Wayne Smith (1999)

Revista Matemática Iberoamericana

Similarity:

Let D = {z: |z| < 1} be the unit disk in the complex plane and denote by dA two-dimensional Lebesgue measure on D. For ε > 0 we define Σε = {z: |arg z| < ε}. We prove that for every ε > 0 there exists a δ > 0 such that if f is analytic, univalent and area-integrable on D, and f(0) = 0 then This problem arose in connection with a characterization by Hamilton, Reich and Strebel of extremal dilatation...

Generalized John disks

Chang-Yu Guo, Pekka Koskela (2014)

Open Mathematics

Similarity:

We establish the basic properties of the class of generalized simply connected John domains.

Combinatorial Modulus on Boundary of Right-Angled Hyperbolic Buildings

Antoine Clais (2016)

Analysis and Geometry in Metric Spaces

Similarity:

In this article, we discuss the quasiconformal structure of boundaries of right-angled hyperbolic buildings using combinatorial tools. In particular, we exhibit some examples of buildings of dimension 3 and 4 whose boundaries satisfy the combinatorial Loewner property. This property is a weak version of the Loewner property. This is motivated by the fact that the quasiconformal structure of the boundary led to many results of rigidity in hyperbolic spaces since G.D.Mostow. In the case...

Hyperbolically convex functions

Wancang Ma, David Minda (1994)

Annales Polonici Mathematici

Similarity:

We investigate univalent holomorphic functions f defined on the unit disk 𝔻 such that f(𝔻) is a hyperbolically convex subset of 𝔻; there are a number of analogies with the classical theory of (euclidean) convex univalent functions. A subregion Ω of 𝔻 is called hyperbolically convex (relative to hyperbolic geometry on 𝔻) if for all points a,b in Ω the arc of the hyperbolic geodesic in 𝔻 connecting a and b (the arc of the circle joining a and b which is orthogonal to the unit circle)...

The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry

Oğuzhan Demirel (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.