Displaying similar documents to “An introduction to some novel applications of Lie algebra cohomology in mathematics and physics.”

Deformations of Lie brackets: cohomological aspects

Marius Crainic, Ieke Moerdijk (2008)

Journal of the European Mathematical Society

Similarity:

We introduce a new cohomology for Lie algebroids, and prove that it provides a differential graded Lie algebra which “controls” deformations of the structure bracket of the algebroid.

The local integration of Leibniz algebras

Simon Covez (2013)

Annales de l’institut Fourier

Similarity:

This article gives a local answer to the coquecigrue problem for Leibniz algebras, that is, the problem of finding a generalization of the (Lie) group structure such that Leibniz algebras are the corresponding tangent algebra structure. Using links between Leibniz algebra cohomology and Lie rack cohomology, we generalize the integration of a Lie algebra into a Lie group by proving that every Leibniz algebra is isomorphic to the tangent Leibniz algebra of a local Lie rack. This article...

Leibniz cohomology for differentiable manifolds

Jerry M. Lodder (1998)

Annales de l'institut Fourier

Similarity:

We propose a definition of Leibniz cohomology, H L * , for differentiable manifolds. Then H L * becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of H L * ( R n ; R ) reduce to those of formal vector fields, and can be identified with certain invariants of foliations.

Cohomology ring of n-Lie algebras.

Mikolaj Rotkiewicz (2005)

Extracta Mathematicae

Similarity:

Natural graded Lie brackets on the space of cochains of n-Leibniz and n-Lie algebras are introduced. It turns out that these brackets agree under the natural embedding introduced by Gautheron. Moreover, n-Leibniz and n-Lie algebras turn to be canonical structures for these brackets in a similar way in which associative algebras (respectively, Lie algebras) are canonical structures for the Gerstenhaber bracket (respectively, Nijenhuis-Richardson bracket).

Cohomology and deformations of 3-dimensional Heisenberg Hom-Lie superalgebras

Junxia Zhu, Liangyun Chen (2021)

Czechoslovak Mathematical Journal

Similarity:

We study Hom-Lie superalgebras of Heisenberg type. For 3-dimensional Heisenberg Hom-Lie superalgebras we describe their Hom-Lie super structures, compute the cohomology spaces and characterize their infinitesimal deformations.