Displaying similar documents to “On the Hardy-type integral operators in Banach function spaces.”

Hardy Inequality in Variable Exponent Lebesgue Spaces

Diening, Lars, Samko, Stefan (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26D10, 46E30, 47B38 We prove the Hardy inequality and a similar inequality for the dual Hardy operator for variable exponent Lebesgue spaces.

Hardy space estimates for multilinear operators (I).

Ronald R. Coifman, Loukas Grafakos (1992)

Revista Matemática Iberoamericana

Similarity:

In this article we study bilinear operators given by inner products of finite vectors of Calderón-Zygmund operators. We find that necessary and sufficient condition for these operators to map products of Hardy spaces into Hardy spaces is to have a certain number of moments vanishing and under this assumption we prove a Hölder-type inequality in the H space context.

Norm inequalities in weighted amalgam

Suket Kumar (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Hardy inequalities for the Hardy-type operators are characterized in the amalgam space which involves Banach function space and sequence space.

Hardy spaces associated with some Schrödinger operators

Jacek Dziubański, Jacek Zienkiewicz (1997)

Studia Mathematica

Similarity:

For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy H A 1 space associated with A. An atomic characterization of H A 1 is shown.

Composition operators and the Hilbert matrix

E. Diamantopoulos, Aristomenis Siskakis (2000)

Studia Mathematica

Similarity:

The Hilbert matrix acts on Hardy spaces by multiplication with Taylor coefficients. We find an upper bound for the norm of the induced operator.

Hardy space H associated to Schrödinger operator with potential satisfying reverse Hölder inequality.

Jacek Dziubanski, Jacek Zienkiewicz (1999)

Revista Matemática Iberoamericana

Similarity:

Let {T} be the semigroup of linear operators generated by a Schrödinger operator -A = Δ - V, where V is a nonnegative potential that belongs to a certain reverse Hölder class. We define a Hardy space H by means of a maximal function associated with the semigroup {T}. Atomic and Riesz transforms characterizations of H are shown.