The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The nilpotency of some groups with all subgroups subnormal.”

Groups with small deviation for non-subnormal subgroups

Leonid Kurdachenko, Howard Smith (2009)

Open Mathematics

Similarity:

We introduce the notion of the non-subnormal deviation of a group G. If the deviation is 0 then G satisfies the minimal condition for nonsubnormal subgroups, while if the deviation is at most 1 then G satisfies the so-called weak minimal condition for such subgroups (though the converse does not hold). Here we present some results on groups G that are either soluble or locally nilpotent and that have deviation at most 1. For example, a torsion-free locally nilpotent with deviation at...

Groups with many nilpotent subgroups

Patrizia Longobardi, Mercede Maj, Avinoam Mann, Akbar Rhemtulla (1996)

Rendiconti del Seminario Matematico della Università di Padova

Similarity:

Groups whose all subgroups are ascendant or self-normalizing

Leonid Kurdachenko, Javier Otal, Alessio Russo, Giovanni Vincenzi (2011)

Open Mathematics

Similarity:

This paper studies groups G whose all subgroups are either ascendant or self-normalizing. We characterize the structure of such G in case they are locally finite. If G is a hyperabelian group and has the property, we show that every subgroup of G is in fact ascendant provided G is locally nilpotent or non-periodic. We also restrict our study replacing ascendant subgroups by permutable subgroups, which of course are ascendant [Stonehewer S.E., Permutable subgroups of infinite groups,...

On maximal subgroups of minimax groups

Silvana Franciosi, Francesco de Giovanni (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

It is proved that a soluble residually finite minimax group is finite-by-nilpotent if and only if it has only finitely many maximal subgroups which are not normal.