The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Regularity of some nonlinear quantities on superharmonic functions in local Herz-type Hardy spaces.”

The φ-transform and wavelet characterizations of Herz-type spaces.

Eugenio Hernández, Guido Weiss, Dachun Yang (1996)

Collectanea Mathematica

Similarity:

In this paper, the authors establish the phi-transform and wavelet characterizations for some Herz and Herz-type Hardy spaces by means of a local version of the discrete tent spaces at the origin.

The local versions of H p ( n ) spaces at the origin

Shan Lu, Da Yang (1995)

Studia Mathematica

Similarity:

Let 0 < p ≤ 1 < q < ∞ and α = n(1/p - 1/q). We introduce some new Hardy spaces H K ̇ q α , p ( n ) which are the local versions of H p ( n ) spaces at the origin. Characterizations of these spaces in terms of atomic and molecular decompositions are established, together with their φ-transform characterizations in M. Frazier and B. Jawerth’s sense. We also prove an interpolation theorem for operators on H K ̇ q α , p ( n ) and discuss the H K ̇ q α , p ( n ) -boundedness of Calderón-Zygmund operators. Similar results can also be obtained...

Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients

Péter Simon, Ferenc Weisz (1997)

Studia Mathematica

Similarity:

Our main result is a Hardy type inequality with respect to the two-parameter Vilenkin system (*) ( k = 1 j = 1 | f ̂ ( k , j ) | p ( k j ) p - 2 ) 1 / p C p f H * * p (1/2 < p≤2) where f belongs to the Hardy space H * * p ( G m × G s ) defined by means of a maximal function. This inequality is extended to p > 2 if the Vilenkin-Fourier coefficients of f form a monotone sequence. We show that the converse of (*) also holds for all p > 0 under the monotonicity assumption.

Hardy space estimates for multilinear operators (II).

Loukas Grafakos (1992)

Revista Matemática Iberoamericana

Similarity:

We continue the study of multilinear operators given by products of finite vectors of Calderón-Zygmund operators. We determine the set of all r ≤ 1 for which these operators map products of Lebesgue spaces L(R) into the Hardy spaces H(R). At the endpoint case r = n/(n + m + 1), where m is the highest vanishing moment of the multilinear operator, we prove a weak type result.

Two-parameter Hardy-Littlewood inequality and its variants

Chang-Pao Chen, Dah-Chin Luor (2000)

Studia Mathematica

Similarity:

Let s* denote the maximal function associated with the rectangular partial sums s m n ( x , y ) of a given double function series with coefficients c j k . The following generalized Hardy-Littlewood inequality is investigated: | | s * | | p , μ C p , α , β Σ j = 0 Σ k = 0 ( j ̅ ) p - α - 2 ( k ̅ ) p - β - 2 | c j k | p 1 / p , where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on c j k and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||p,μ-convergence property...