Displaying similar documents to “Uniqueness of Kähler-Einstein cone metrics.”

Kähler-Einstein metrics singular along a smooth divisor

Raffe Mazzeo (1999)

Journées équations aux dérivées partielles

Similarity:

In this note we discuss some recent and ongoing joint work with Thalia Jeffres concerning the existence of Kähler-Einstein metrics on compact Kähler manifolds which have a prescribed incomplete singularity along a smooth divisor D . We shall begin with a general discussion of the problem, and give a rough outline of the “classical” proof of existence in the smooth case, due to Yau and Aubin, where no singularities are prescribed. Following this is a discussion of the geometry of the conical...

Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields

Frédéric Campana, Henri Guenancia, Mihai Păun (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We prove the existence of non-positively curved Kähler-Einstein metrics with cone singularities along a given simple normal crossing divisor of a compact Kähler manifold, under a technical condition on the cone angles, and we also discuss the case of positively-curved Kähler-Einstein metrics with cone singularities. As an application we extend to this setting classical results of Lichnerowicz and Kobayashi on the parallelism and vanishing of appropriate holomorphic tensor fields. ...

Symmetries and Kähler-Einstein metrics

Claudio Arezzo, Alessandro Ghigi (2005)

Bollettino dell'Unione Matematica Italiana

Similarity:

We consider Fano manifolds M that admit a collection of finite automorphism groups G 1 , ... , G k , such that the quotients M / G i are smooth Fano manifolds possessing a Kähler-Einstein metric. Under some numerical and smoothness assumptions on the ramification divisors, we prove that M admits a Kähler-Einstein metric too.