The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Blow up of mechanical systems with a homogeneous energy.”

Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy

Yang Liu, Pengju Lv, Chaojiu Da (2016)

Annales Polonici Mathematici

Similarity:

This paper is concerned with the initial boundary value problem for a nonlocal p-Laplacian evolution equation with critical initial energy. In the framework of the energy method, we construct an unstable set and establish its invariance. Finally, the finite time blow-up of solutions is derived by a combination of the unstable set and the concavity method.

Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain

Valeria Banica (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper we concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound the blow-up rate from below, for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than ( T - t ) - 1 , the expected one. Moreover, we show that blow-up cannot occur on the boundary, under certain geometric conditions on the domain. ...

Instability of equilibria in dimension three

Marco Brunella (1998)

Annales de l'institut Fourier

Similarity:

In this paper we show that if v is an analytic vector field on 3 having an isolated singular point at 0, then there exists a trajectory of v which converges to 0 in the past or in the future. The proof is based on certain results concerning desingularizaton of vector fields in dimension three and on index-type arguments .

Blow up and near soliton dynamics for the L 2 critical gKdV equation

Yvan Martel, Frank Merle, Pierre Raphaël (2011-2012)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

These notes present the main results of [, , ] concerning the mass critical (gKdV) equation u t + ( u x x + u 5 ) x = 0 for initial data in H 1 close to the soliton. These works revisit the blow up phenomenon close to the family of solitons in several directions: definition of the stable blow up and classification of all possible behaviors in a suitable functional setting, description of the minimal mass blow up in H 1 , construction of various exotic blow up rates in H 1 , including grow up in infinite time. ...