The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Valdivia compact abelian groups.”

Isomorphisms of Direct Products of Finite Cyclic Groups

Kenichi Arai, Hiroyuki Okazaki, Yasunari Shidama (2012)

Formalized Mathematics

Similarity:

In this article, we formalize that every finite cyclic group is isomorphic to a direct product of finite cyclic groups which orders are relative prime. This theorem is closely related to the Chinese Remainder theorem ([18]) and is a useful lemma to prove the basis theorem for finite abelian groups and the fundamental theorem of finite abelian groups. Moreover, we formalize some facts about the product of a finite sequence of abelian groups.

The Bohr compactification, modulo a metrizable subgroup

W. Comfort, F. Trigos-Arrieta, S. Wu (1993)

Fundamenta Mathematicae

Similarity:

The authors prove the following result, which generalizes a well-known theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compactification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies: A·(N ∩ G) is compact in G if and only if {aN:a ∈ A} is compact in bG/N. Examples are given to show: (a) the asserted equivalence can fail in the absence of the metrizability hypothesis, even when N ∩ G = {1}; (b) the asserted equivalence can...

Imposing psendocompact group topologies on Abeliau groups

W. Comfort, I. Remus (1993)

Fundamenta Mathematicae

Similarity:

The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, m ( α ) 2 α . We show:    Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m ( α ) r 0 ( G ) γ 2 α , or α > ω and α ω r 0 ( G ) 2 α , then G admits a pseudocompact group topology of weight α.  Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies r 0 ( G ) m ( α ) .  Theorem 5.2(b). If G is divisible Abelian with 2 r 0 ( G ) γ , then G admits...