The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On certain multidimensional generalized Kober operators.”

Bounds for Fractional Powers of Operators in a Hilbert Space and Constants in Moment Inequalities

I. Gil’, Michael (2009)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 47A56, 47A57,47A63 We derive bounds for the norms of the fractional powers of operators with compact Hermitian components, and operators having compact inverses in a separable Hilbert space. Moreover, for these operators, as well as for dissipative operators, the constants in the moment inequalities are established. * This research was supported by the Kamea Fund of Israel.

Theorem for Series in Three-Parameter Mittag-Leffler Function

Soubhia, Ana, Camargo, Rubens, Oliveira, Edmundo, Vaz, Jayme (2010)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification 2010: 26A33, 33E12. The new result presented here is a theorem involving series in the three-parameter Mittag-Leffler function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional differential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Leffler function.

Generalized Fractional Calculus, Special Functions and Integral Transforms: What is the Relation? Обобщения на дробното смятане, специалните функции и интегралните трансформации: Каква е връзката?

Kiryakova, Virginia (2011)

Union of Bulgarian Mathematicians

Similarity:

Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата. ...