Displaying similar documents to “Resolution of identity in certain metrizable locally convex spaces.”

The space D ( U ) is not B r -complete

Manuel Valdivia (1977)

Annales de l'institut Fourier

Similarity:

Certain classes of locally convex space having non complete separated quotients are studied and consequently results about B r -completeness are obtained. In particular the space of L. Schwartz D ( Ω ) is not B r -complete where Ω denotes a non-empty open set of the euclidean space R m .

Representing and absolutely representing systems

V. Kadets, Yu. Korobeĭnik (1992)

Studia Mathematica

Similarity:

We introduce various classes of representing systems in linear topological spaces and investigate their connections in spaces with different topological properties. Let us cite a typical result of the paper. If H is a weakly separated sequentially separable linear topological space then there is a representing system in H which is not absolutely representing.

On B r -completeness

Manuel Valdivia (1975)

Annales de l'institut Fourier

Similarity:

In this paper it is proved that if { E n } n = 1 and { F n } n = 1 are two sequences of infinite-dimensional Banach spaces then H = n = 1 E n × n = 1 F n is not B r -complete. If { E n } n = 1 and { F n } n = 1 are also reflexive spaces there is on H a separated locally convex topology , coarser than the initial one, such that H [ ] is a bornological barrelled space which is not an inductive limit of Baire spaces. It is given also another results on B r -completeness and bornological spaces.