The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Unknotting number and knot diagram.”

Lissajous knots and billiard knots

Vaughan Jones, Józef Przytycki (1998)

Banach Center Publications

Similarity:

We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.

Applications of topology to DNA

Isabel Darcy, De Sumners (1998)

Banach Center Publications

Similarity:

The following is an expository article meant to give a simplified introduction to applications of topology to DNA.

Wirtinger presentations for higher dimensional manifold knots obtained from diagrams

Seiichi Kamada (2001)

Fundamenta Mathematicae

Similarity:

A Wirtinger presentation of a knot group is obtained from a diagram of the knot. T. Yajima showed that for a 2-knot or a closed oriented surface embedded in the Euclidean 4-space, a Wirtinger presentation of the knot group is obtained from a diagram in an analogous way. J. S. Carter and M. Saito generalized the method to non-orientable surfaces in 4-space by cutting non-orientable sheets of their diagrams by some arcs. We give a modification to their method so that one does not need...

Positive knots, closed braids and the Jones polynomial

Alexander Stoimenow (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Using the recent Gauß diagram formulas for Vassiliev invariants of Polyak-Viro-Fiedler and combining these formulas with the Bennequin inequality, we prove several inequalities for positive knots relating their Vassiliev invariants, genus and degrees of the Jones polynomial. As a consequence, we prove that for any of the polynomials of Alexander/Conway, Jones, HOMFLY, Brandt-Lickorish-Millett-Ho and Kauffman there are only finitely many positive knots with the same polynomial and no...

Every knot is a billiard knot

P. V. Koseleff, D. Pecker (2014)

Banach Center Publications

Similarity:

We show that every knot can be realized as a billiard trajectory in a convex prism. This proves a conjecture of Jones and Przytycki.