Displaying similar documents to “Boundary stabilization of the linear elastodinamic system by a Lyapunov-type method.”

Boundary stabilization of Maxwell’s equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks. ...

Stabilization of Berger–Timoshenko’s equation as limit of the uniform stabilization of the von Kármán system of beams and plates

G. Perla Menzala, Ademir F. Pazoto, Enrique Zuazua (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider a dynamical one-dimensional nonlinear von Kármán model for beams depending on a parameter ε > 0 and study its asymptotic behavior for t large, as ε 0 . Introducing appropriate damping mechanisms we show that the energy of solutions of the corresponding damped models decay exponentially uniformly with respect to the parameter ε . In order for this to be true the damping mechanism has to have the appropriate scale with respect to ε . In the limit as ε 0 we obtain damped Berger–Timoshenko...