Displaying similar documents to “Hecke operators on de Rham cohomology.”

Quasimodular forms and quasimodular polynomials

Min Ho Lee (2012)

Annales mathématiques Blaise Pascal

Similarity:

This paper is based on lectures delivered at the Workshop on quasimodular forms held in June, 2010 in Besse, France, and it provides a survey of some recent work on quasimodular forms.

A geometric description of differential cohomology

Ulrich Bunke, Matthias Kreck, Thomas Schick (2010)

Annales mathématiques Blaise Pascal

Similarity:

In this paper we give a geometric cobordism description of differential integral cohomology. The main motivation to consider this model (for other models see [, , , ]) is that it allows for simple descriptions of both the cup product and the integration. In particular it is very easy to verify the compatibilty of these structures. We proceed in a similar way in the case of differential cobordism as constructed in []. There the starting point was Quillen’s cobordism description of singular...

Explicit Hecke series for symplectic group of genus 4

Kirill Vankov (2011)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Shimura conjectured the rationality of the generating series for Hecke operators for the symplectic group of genus n . This conjecture was proved by Andrianov for arbitrary genus n , but the explicit expression was out of reach for genus higher than 3. For genus n = 4 , we explicitly compute the rational fraction in this conjecture. Using formulas for images of double cosets under the Satake spherical map, we first compute the sum of the generating series, which is a rational fraction with...

L p , q -cohomology of warped cylinders

Yaroslav Kopylov (2009)

Annales mathématiques Blaise Pascal

Similarity:

We extend some results by Gol dshtein, Kuz minov, and Shvedov about the L p -cohomology of warped cylinders to L p , q -cohomology for p q . As an application, we establish some sufficient conditions for the nontriviality of the L p , q -torsion of a surface of revolution.