Displaying similar documents to “Equivariance, variational principles, and the Feynman integral.”

Some geometric aspects of the calculus of variations in several independent variables

David Saunders (2010)

Communications in Mathematics

Similarity:

This paper describes some recent research on parametric problems in the calculus of variations. It explains the relationship between these problems and the type of problem more usual in physics, where there is a given space of independent variables, and it gives an interpretation of the first variation formula in this context in terms of cohomology.

Geometric mechanics on nonholonomic submanifolds

Olga Krupková (2010)

Communications in Mathematics

Similarity:

In this survey article, nonholonomic mechanics is presented as a part of geometric mechanics. We follow a geometric setting where the constraint manifold is a submanifold in a jet bundle, and a nonholonomic system is modelled as an exterior differential system on the constraint manifold. The approach admits to apply coordinate independent methods, and is not limited to Lagrangian systems under linear constraints. The new methods apply to general (possibly nonconservative) mechanical...

Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles

Marcella Palese, Ekkehart Winterroth (2005)

Archivum Mathematicum

Similarity:

We derive both local and global generalized Bianchi identities for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the a priori introduction of a connection. The proof is based on a global decomposition of the variational Lie derivative of the generalized Euler-Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular,...