The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Shoikhet's conjecture and Duflo isomorphism on (co)invariants.”

The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products

Thomas Tradler (2008)

Annales de l’institut Fourier

Similarity:

We define a BV-structure on the Hochschild cohomology of a unital, associative algebra A with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital A -algebra with a symmetric and non-degenerate -inner product.

On the isoperimetry of graphs with many ends

Christophe Pittet (1998)

Colloquium Mathematicae

Similarity:

Let X be a connected graph with uniformly bounded degree. We show that if there is a radius r such that, by removing from X any ball of radius r, we get at least three unbounded connected components, then X satisfies a strong isoperimetric inequality. In particular, the non-reduced l 2 -cohomology of X coincides with the reduced l 2 -cohomology of X and is of uncountable dimension. (Those facts are well known when X is the Cayley graph of a finitely generated group with infinitely many ends.) ...

Formality theorems: from associators to a global formulation

Gilles Halbout (2006)

Annales mathématiques Blaise Pascal

Similarity:

Let M be a differential manifold. Let Φ be a Drinfeld associator. In this paper we explain how to construct a global formality morphism starting from Φ . More precisely, following Tamarkin’s proof, we construct a Lie homomorphism “up to homotopy" between the Lie algebra of Hochschild cochains on C ( M ) and its cohomology ( Γ ( M , Λ T M ) , [ - , - ] S ). This paper is an extended version of a course given 8 - 12 March 2004 on Tamarkin’s works. The reader will find explicit examples, recollections on G -structures, explanation...