From Newton's equation to fractional diffusion and wave equations.
Vázquez, Luis (2011)
Advances in Difference Equations [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Vázquez, Luis (2011)
Advances in Difference Equations [electronic only]
Similarity:
Debnath, Lokenath (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Atanackovic, Teodor, Stankovic, Bogoljub (2007)
Fractional Calculus and Applied Analysis
Similarity:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05 We treat the fractional order differential equation that contains the left and right Riemann-Liouville fractional derivatives. Such equations arise as the Euler-Lagrange equation in variational principles with fractional derivatives. We reduce the problem to a Fredholm integral equation and construct a solution in the space of continuous functions. Two competing approaches in formulating differential equations...
Stojanović, Mirjana (2011)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo We generalize the two forms of the fractional derivatives (in Riemann-Liouville and Caputo sense) to spaces of generalized functions using appropriate techniques such as the multiplication of absolutely continuous function by the Heaviside function, and the analytical continuation. As an application, we give the two forms of the fractional derivatives of discontinuous functions in spaces of...
Astha Chauhan, Rajan Arora (2019)
Communications in Mathematics
Similarity:
In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation...
Branislav Martić (1973)
Publications de l'Institut Mathématique
Similarity:
Li-Li Liu, Jun-Sheng Duan (2015)
Open Mathematics
Similarity:
In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case...
Marwan Alquran, Kamel Al-Khaled, Mohammed Ali, Omar Abu Arqub (2017)
Waves, Wavelets and Fractals
Similarity:
The Hirota-Satsuma model with fractional derivative is considered to provide some characteristics of memory embedded into the system. The modified system is analyzed analytically using a new technique called residual power series method. We observe thatwhen the value of memory index (time-fractional order) is close to zero, the solutions bifurcate and produce a wave-like pattern.
Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)
Applications of Mathematics
Similarity:
We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...