Integral operators in the theory of induced Banach representations. II: The bundle approach.
Schochetman, I.E. (1981)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Schochetman, I.E. (1981)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Wojciech Chojnacki (1999)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Kitchen, Joseph W., Robbins, David A. (1984)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Hõim, Terje, Robbins, D.A. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Joseph W. Kitchen, David A. Robbins
Similarity:
PrefaceLet A be a commutative Banach algebra with maximal ideal space ∆ and let ^: A → C₀(∆) be the Gelfand representation of A. If M is a Banach module over A, then a bounded linear map φ: M → M₀, will be called a representation of M of Gelfund type if M₀ is a Banach module over C₀(∆) and φ is ^-linear in the sense that φ(ax) = âφ(x) for all a ∈ A and x ∈ M. Two such representations have been studied previously. In [50] and [51] Robbins describes such a representation in which M₀, is...
Kitchen, J.W., Robbins, D.A. (1994)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Anthony Karel Seda (1983)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Schochetman, I.E. (1982)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Anthony Karel Seda (1985)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Ganiev, I.G., Chilin, V.I. (2003)
Vladikavkazskiĭ Matematicheskiĭ Zhurnal
Similarity:
Robbins, D.A. (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Ehrhard Behrends, Ursula Schmidt-Bichler (1981)
Studia Mathematica
Similarity: