Displaying similar documents to “A generalization of a theorem of Faith and Menal and applications.”

Rings whose modules have maximal submodules.

Carl Faith (1995)

Publicacions Matemàtiques

Similarity:

A ring R is a right max ring if every right module M ≠ 0 has at least one maximal submodule. It suffices to check for maximal submodules of a single module and its submodules in order to test for a max ring; namely, any cogenerating module E of mod-R; also it suffices to check the submodules of the injective hull E(V) of each simple module V (Theorem 1). Another test is transfinite nilpotence of the radical of E in the sense that radα E = 0;...

On endomorphisms of multiplication and comultiplication modules

H. Ansari-Toroghy, F. Farshadifar (2008)

Archivum Mathematicum

Similarity:

Let R be a ring with an identity (not necessarily commutative) and let M be a left R -module. This paper deals with multiplication and comultiplication left R -modules M having right End R ( M ) -module structures.

Generalized lifting modules.

Wang, Yongduo, Ding, Nanqing (2006)

International Journal of Mathematics and Mathematical Sciences

Similarity:

Rad-supplemented modules

Engin Büyükaşik, Engin Mermut, Salahattin Özdemir (2010)

Rendiconti del Seminario Matematico della Università di Padova

Similarity: