The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Long cycles in certain graphs of large degree.”

Vertex-dominating cycles in 2-connected bipartite graphs

Tomoki Yamashita (2007)

Discussiones Mathematicae Graph Theory

Similarity:

A cycle C is a vertex-dominating cycle if every vertex is adjacent to some vertex of C. Bondy and Fan [4] showed that if G is a 2-connected graph with δ(G) ≥ 1/3(|V(G)| - 4), then G has a vertex-dominating cycle. In this paper, we prove that if G is a 2-connected bipartite graph with partite sets V₁ and V₂ such that δ(G) ≥ 1/3(max{|V₁|,|V₂|} + 1), then G has a vertex-dominating cycle.

Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs

Binlong Lia, Shenggui Zhang (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph on n vertices. A vertex of G with degree at least n/2 is called a heavy vertex, and a cycle of G which contains all the heavy vertices of G is called a heavy cycle. In this note, we characterize graphs which contain no heavy cycles. For a given graph H, we say that G is H-heavy if every induced subgraph of G isomorphic to H contains two nonadjacent vertices with degree sum at least n. We find all the connected graphs S such that a 2-connected graph G being S-heavy implies...

Large Degree Vertices in Longest Cycles of Graphs, I

Binlong Li, Liming Xiong, Jun Yin (2016)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper, we consider the least integer d such that every longest cycle of a k-connected graph of order n (and of independent number α) contains all vertices of degree at least d.

On long cycles through four prescribed vertices of a polyhedral graph

Jochen Harant, Stanislav Jendrol', Hansjoachim Walther (2008)

Discussiones Mathematicae Graph Theory

Similarity:

For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least (1/36)c+(20/3) through any four vertices of G.

Forbidden Pairs and (k,m)-Pancyclicity

Charles Brian Crane (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G on n vertices is said to be (k, m)-pancyclic if every set of k vertices in G is contained in a cycle of length r for each r ∈ {m, m+1, . . . , n}. This property, which generalizes the notion of a vertex pancyclic graph, was defined by Faudree, Gould, Jacobson, and Lesniak in 2004. The notion of (k, m)-pancyclicity provides one way to measure the prevalence of cycles in a graph. We consider pairs of subgraphs that, when forbidden, guarantee hamiltonicity for 2-connected graphs...