The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On partially pseudo symmetric K -contact Riemannian manifolds.”

On Almost Pseudo-Z-symmetric Manifolds

Uday Chand De, Prajjwal Pal (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study almost pseudo-Z-symmetric manifolds. Some geometric properties have been studied. Next we consider conformally flat almost pseudo-Z-symmetric manifolds. We obtain a sufficient condition for an almost pseudo-Z-symmetric manifold to be a quasi Einstein manifold. Also we prove that a totally umbilical hypersurface of a conformally flat A ( P Z S ) n ( n > 3 ) is a manifold of quasi constant curvature. Finally, we give an example to verify the result already obtained...

On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity

Uday Chand De, Avik De (2012)

Czechoslovak Mathematical Journal

Similarity:

The object of the present paper is to study almost pseudo-conformally symmetric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric Ricci-recurrent manifolds has been proved by an explicit example. Some geometric properties have been studied. Among others we prove that in such a manifold the vector field ρ corresponding to the 1-form of recurrence is irrotational and the integral curves of the vector field ρ are geodesic. We also study some global properties...

Pseudo-symmetric contact 3-manifolds III

Jong Taek Cho, Jun-ichi Inoguchi, Ji-Eun Lee (2009)

Colloquium Mathematicae

Similarity:

A trans-Sasakian 3-manifold is pseudo-symmetric if and only if it is η-Einstein. In particular, a quasi-Sasakian 3-manifold is pseudo-symmetric if and only if it is a coKähler manifold or a homothetic Sasakian manifold. Some examples of non-Sasakian pseudo-symmetric contact 3-manifolds are exhibited.