The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Relationships among transforms, convolutions, and first variations.”

Fourier-Feynman transforms of unbounded functionals on abstract Wiener space

Byoung Kim, Il Yoo, Dong Cho (2010)

Open Mathematics

Similarity:

Huffman, Park and Skoug established several results involving Fourier-Feynman transform and convolution for functionals in a Banach algebra S on the classical Wiener space. Chang, Kim and Yoo extended these results to abstract Wiener space for a more generalized Fresnel class 𝒜 1 , 𝒜 2 A1,A2 than the Fresnel class (B)which corresponds to the Banach algebra S. In this paper we study Fourier-Feynman transform, convolution and first variation of unbounded functionals on abstract Wiener space...

On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms

Nguyen Thanh Hong, Trinh Tuan, Nguyen Xuan Thao (2013)

Applications of Mathematics

Similarity:

We deal with several classes of integral transformations of the form f ( x ) D + 2 1 u ( e - u cosh ( x + v ) + e - u cosh ( x - v ) ) h ( u ) f ( v ) d u d v , where D is an operator. In case D is the identity operator, we obtain several operator properties on L p ( + ) with weights for a generalized operator related to the Fourier cosine and the Kontorovich-Lebedev integral transforms. For a class of differential operators of infinite order, we prove the unitary property of these transforms on L 2 ( + ) and define the inversion formula. Further, for an other class of differential operators...

A characterization of Fourier transforms

Philippe Jaming (2010)

Colloquium Mathematicae

Similarity:

The aim of this paper is to show that, in various situations, the only continuous linear (or not) map that transforms a convolution product into a pointwise product is a Fourier transform. We focus on the cyclic groups ℤ/nℤ, the integers ℤ, the torus 𝕋 and the real line. We also ask a related question for the twisted convolution.