Displaying similar documents to “Relationships among transforms, convolutions, and first variations.”

Fourier-Feynman transforms of unbounded functionals on abstract Wiener space

Byoung Kim, Il Yoo, Dong Cho (2010)

Open Mathematics

Similarity:

Huffman, Park and Skoug established several results involving Fourier-Feynman transform and convolution for functionals in a Banach algebra S on the classical Wiener space. Chang, Kim and Yoo extended these results to abstract Wiener space for a more generalized Fresnel class 𝒜 1 , 𝒜 2 A1,A2 than the Fresnel class (B)which corresponds to the Banach algebra S. In this paper we study Fourier-Feynman transform, convolution and first variation of unbounded functionals on abstract Wiener space...

On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms

Nguyen Thanh Hong, Trinh Tuan, Nguyen Xuan Thao (2013)

Applications of Mathematics

Similarity:

We deal with several classes of integral transformations of the form f ( x ) D + 2 1 u ( e - u cosh ( x + v ) + e - u cosh ( x - v ) ) h ( u ) f ( v ) d u d v , where D is an operator. In case D is the identity operator, we obtain several operator properties on L p ( + ) with weights for a generalized operator related to the Fourier cosine and the Kontorovich-Lebedev integral transforms. For a class of differential operators of infinite order, we prove the unitary property of these transforms on L 2 ( + ) and define the inversion formula. Further, for an other class of differential operators...

A characterization of Fourier transforms

Philippe Jaming (2010)

Colloquium Mathematicae

Similarity:

The aim of this paper is to show that, in various situations, the only continuous linear (or not) map that transforms a convolution product into a pointwise product is a Fourier transform. We focus on the cyclic groups ℤ/nℤ, the integers ℤ, the torus 𝕋 and the real line. We also ask a related question for the twisted convolution.