The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Uniform asymptotic normal structure, the uniform semi-opial property, and fixed points of asymptotically regular uniformly Lipschitzian semigroups. II.”

Fixed points of Lipschitzian semigroups in Banach spaces

Jarosław Górnicki (1997)

Studia Mathematica

Similarity:

We prove the following theorem: Let p > 1 and let E be a real p-uniformly convex Banach space, and C a nonempty bounded closed convex subset of E. If T = T s : C C : s G = [ 0 , ) is a Lipschitzian semigroup such that g = l i m i n f G α i n f G δ 0 1 / α ʃ 0 α T β + δ p d β < 1 + c , where c > 0 is some constant, then there exists x ∈ C such that T s x = x for all s ∈ G.