Displaying similar documents to “Degree of approximation of conjugate of a function belonging to Lip ( ξ ( t ) , p ) class by matrix summability means of conjugate Fourier series.”

Summation of Fourier series.

Weisz, Ferenc (2004)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Similarity:

Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations

Zhuangchu Luo, Hua Chen, Changgui Zhang (2012)

Annales de l’institut Fourier

Similarity:

In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at ( t , x ) = ( 0 , 0 ) C 2 . Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the k -summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.

Product Theorems for Certain Summability Methods in Non-archimedean Fields

P.N. Natarajan (2003)

Annales mathématiques Blaise Pascal

Similarity:

In this paper, K denotes a complete, non-trivially valued, non-archimedean field. Sequences and infinite matrices have entries in K . The main purpose of this paper is to prove some product theorems involving the methods M and ( N , p n ) in such fields K .

Polyhedral summability of multiple Fourier series (and explicit formulas for Dirichlet kernels on n and on compact Lie groups)

Giancarlo Travaglini (1993)

Colloquium Mathematicae

Similarity:

We study polyhedral Dirichlet kernels on the n-dimensional torus and we write a fairly simple formula which extends the one-dimensional identity j = - N N e i j t = s i n ( ( N + ( 1 / 2 ) ) t ) / s i n ( ( 1 / 2 ) t ) . We prove sharp results for the Lebesgue constants and for the pointwise boundedness of polyhedral Dirichlet kernels; we apply our results and methods to approximation theory, to more general summability methods and to Fourier series on compact Lie groups, where we write an asymptotic formula for the Dirichlet kernels.