The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Extensions of racks and quandles.”

Abelian modules.

Agayev, N., Güngöroğlu, G., Harmanci, A., Halicioğlu, S. (2009)

Acta Mathematica Universitatis Comenianae. New Series

Similarity:

Componentwise injective models of functors to DGAs

Marek Golasiński (1997)

Colloquium Mathematicae

Similarity:

The aim of this paper is to present a starting point for proving existence of injective minimal models (cf. [8]) for some systems of complete differential graded algebras.

Quotient Module of Z-module

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2012)

Formalized Mathematics

Similarity:

In this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems...

Z-modules

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2012)

Formalized Mathematics

Similarity:

In this article, we formalize Z-module, that is a module over integer ring. Z-module is necassary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm and cryptographic systems with lattices [11].