Quotient Module of Z-module

Yuichi Futa; Hiroyuki Okazaki; Yasunari Shidama

Formalized Mathematics (2012)

  • Volume: 20, Issue: 3, page 205-214
  • ISSN: 1426-2630

Abstract

top
In this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems of Z-module.

How to cite

top

Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. "Quotient Module of Z-module." Formalized Mathematics 20.3 (2012): 205-214. <http://eudml.org/doc/267786>.

@article{YuichiFuta2012,
abstract = {In this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems of Z-module.},
author = {Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {3},
pages = {205-214},
title = {Quotient Module of Z-module},
url = {http://eudml.org/doc/267786},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Yuichi Futa
AU - Hiroyuki Okazaki
AU - Yasunari Shidama
TI - Quotient Module of Z-module
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 3
SP - 205
EP - 214
AB - In this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems of Z-module.
LA - eng
UR - http://eudml.org/doc/267786
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  4. [4] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  5. [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  6. [6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  7. [7] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  8. [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  9. [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  10. [10] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47-59, 2012, doi: 10.2478/v10037-012-0007-z.[Crossref] Zbl1276.94012
  11. [11] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990. 
  12. [12] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  13. [13] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990. 
  14. [14] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective (the international series in engineering and computer science). 2002. Zbl1140.94010
  15. [15] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999. 
  16. [16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990. 
  17. [17] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003. 
  18. [18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  19. [19] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990. 
  20. [20] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990. 
  21. [21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990. 
  22. [22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  23. [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  24. [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  25. [25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

Citations in EuDML Documents

top
  1. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Free ℤ-module
  2. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Submodule of free Z-module
  3. Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Rank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module
  4. Yuichi Futa, Yasunari Shidama, Lattice of ℤ-module
  5. Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, Yasunari Shidama, Torsion Z-module and Torsion-free Z-module
  6. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Torsion Part of ℤ-module
  7. Yuichi Futa, Yasunari Shidama, Divisible ℤ-modules

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.