Displaying similar documents to “On a weighted Toeplitz operator and its commutant.”

Algebraic properties of Toeplitz operators on weighted Bergman spaces

Amila Appuhamy (2021)

Czechoslovak Mathematical Journal

Similarity:

We study algebraic properties of two Toeplitz operators on the weighted Bergman space on the unit disk with harmonic symbols. In particular the product property and commutative property are discussed. Further we apply our results to solve a compactness problem of the product of two Hankel operators on the weighted Bergman space on the unit bidisk.

On Pták’s generalization of Hankel operators

Carmen H. Mancera, Pedro José Paúl (2001)

Czechoslovak Mathematical Journal

Similarity:

In 1997 Pták defined generalized Hankel operators as follows: Given two contractions T 1 ( 1 ) and T 2 ( 2 ) , an operator X 1 2 is said to be a generalized Hankel operator if T 2 X = X T 1 * and X satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of T 1 and T 2 . This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong...