Recent applications of fractional calculus to science and engineering.
Debnath, Lokenath (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Debnath, Lokenath (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Yuriy Povstenko (2014)
Open Mathematics
Similarity:
The central symmetric time-fractional heat conduction equation with Caputo derivative of order 0 < α ≤ 2 is considered in a ball under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of values of temperature and values of its normal derivative at the boundary, and the physical condition with the prescribed linear combination of values of temperature and values of the heat flux at the boundary, which is a consequence of Newton’s law...
Huang, F. (2009)
Journal of Applied Mathematics
Similarity:
Samuel, M., Thomas, Anitha (2010)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 26A33, 33E12, 33C60, 35R11 In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.
Vázquez, Luis (2011)
Advances in Difference Equations [electronic only]
Similarity:
Li-Li Liu, Jun-Sheng Duan (2015)
Open Mathematics
Similarity:
In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case...
Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)
Applications of Mathematics
Similarity:
We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...
Boyadjiev, Lyubomir, Al-Saqabi, Bader (2012)
Mathematica Balkanica New Series
Similarity:
MSC 2010: 35R11, 42A38, 26A33, 33E12 The method of integral transforms based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is utilized for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the Weyl space-fractional operator. The solutions obtained are in integral form whose kernels are Green functions expressed...
El-Sayed, Ahmed M. A.
Similarity:
Gupta, V.G., Shrama, Bhavna, Kiliçman, Adem (2010)
Journal of Applied Mathematics
Similarity: