The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Existence of triple positive periodic solutions of a functional differential equation depending on a parameter.”

On the existence of one-signed periodic solutions of some differential equations of second order

Jan Ligęza (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

We study the existence of one-signed periodic solutions of the equations x ' ' ( t ) - a 2 ( t ) x ( t ) + μ f ( t , x ( t ) , x ' ( t ) ) = 0 , x ' ' ( t ) + a 2 ( t ) x ( t ) = μ f ( t , x ( t ) , x ' ( t ) ) , where μ > 0 , a : ( - , + ) ( 0 , ) is continuous and 1-periodic, f is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.

Existence of periodic solutions for first-order totally nonlinear neutral differential equations with variable delay

Abdelouaheb Ardjouni, Ahcène Djoudi (2014)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We use a modification of Krasnoselskii’s fixed point theorem due to Burton (see [Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9 (2002), 181–190], Theorem 3) to show that the totally nonlinear neutral differential equation with variable delay x ' ( t ) = - a ( t ) h ( x ( t ) ) + c ( t ) x ' ( t - g ( t ) ) Q ' ( x ( t - g ( t ) ) ) + G ( t , x ( t ) , x ( t - g ( t ) ) ) , has a periodic solution. We invert this equation to construct a fixed point mapping expressed as a sum of two mappings such that one is compact and the other is a large contraction. We show that the...