Displaying similar documents to “Constructing invariants for finite groups.”

Invariants of four subspaces

Gerry W. Schwarz, David L. Wehlau (1998)

Annales de l'institut Fourier

Similarity:

We consider problems in invariant theory related to the classification of four vector subspaces of an n -dimensional complex vector space. We use castling techniques to quickly recover results of Howe and Huang on invariants. We further obtain information about principal isotropy groups, equidimensionality and the modules of covariants.

On the generalized Davenport constant and the Noether number

Kálmán Cziszter, Mátyás Domokos (2013)

Open Mathematics

Similarity:

Known results on the generalized Davenport constant relating zero-sum sequences over a finite abelian group are extended for the generalized Noether number relating rings of polynomial invariants of an arbitrary finite group. An improved general upper degree bound for polynomial invariants of a non-cyclic finite group that cut out the zero vector is given.

Finite type invariants for cyclic equivalence classes of nanophrases

Yuka Kotorii (2014)

Fundamenta Mathematicae

Similarity:

We define finite type invariants for cyclic equivalence classes of nanophrases and construct universal invariants. Also, we identify the universal finite type invariant of degree 1 essentially with the linking matrix. It is known that extended Arnold basic invariants to signed words are finite type invariants of degree 2, by Fujiwara's work. We give another proof of this result and show that those invariants do not provide the universal one of degree 2.

A database of invariant rings.

Kemper, Gregor, Körding, Elmar, Malle, Gunter, Matzat, B.Heinrich, Vogel, Denis (2001)

Experimental Mathematics

Similarity:

Link invariants from finite racks

Sam Nelson (2014)

Fundamenta Mathematicae

Similarity:

We define ambient isotopy invariants of oriented knots and links using the counting invariants of framed links defined by finite racks. These invariants reduce to the usual quandle counting invariant when the rack in question is a quandle. We are able to further enhance these counting invariants with 2-cocycles from the coloring rack's second rack cohomology satisfying a new degeneracy condition which reduces to the usual case for quandles.

Calculs d'invariants primitifs de groupes finis

Ines Abdeljaouad (2010)

RAIRO - Theoretical Informatics and Applications

Similarity:

We introduce in this article a new method to calculate all absolute and relatif primitive invariants of finite groups. This method is inspired from K. Girstmair which calculate an absolute primitive invariant of minimal degree. Are presented two algorithms, the first one enable us to calculate all primitive invariants of minimal degree, and the second one calculate all absolute or relative primitive invariants with distincts coefficients. This work take place in Galois Theory and Invariant...