Displaying similar documents to “Properties of fixed point set of a multivalued map.”

Metric fixed point theory for multivalued mappings

Hong-Kun Xu

Similarity:

Some new and recent results on the fixed point theory of multivalued contractions and nonexpansive mappings are presented. Discussions concerning Reich's problem are included. Existence of fixed points for weakly inward contractions is proved. Local contractions are also discussed. The Kirk-Massa theorem is extended to inward multivalued nonexpansive mappings. Using an inequality characteristic of uniform convexity, another proof of Lim's theorem on weakly inward multivalued nonexpansive...

Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces

Xiaolong Qin, Yongfu Su, Meijuan Shang (2007)

Open Mathematics

Similarity:

Let E be a uniformly convex Banach space and K a nonempty convex closed subset which is also a nonexpansive retract of E. Let T 1, T 2 and T 3: K → E be asymptotically nonexpansive mappings with k n, l n and j n. [1, ∞) such that Σn=1∞(k n − 1) < ∞, Σn=1∞(l n − 1) < ∞ and Σn=1∞(j n − 1) < ∞, respectively and F nonempty, where F = x ∈ K: T 1x = T 2x = T 3 x = xdenotes the common fixed points set of T 1, T 2 and T 3. Let α n, α′ n and α″ n be real sequences in (0, 1) and ∈ ≤ α...

Proximal normal structure and relatively nonexpansive mappings

A. Anthony Eldred, W. A. Kirk, P. Veeramani (2005)

Studia Mathematica

Similarity:

The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in...