Displaying similar documents to “Construction of Nijenhuis operators and dendriform trialgebras.”

Operads of decorated trees and their duals

Vsevolod Yu. Gubarev, Pavel S. Kolesnikov (2014)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This is an extended version of a talk presented by the second author on the Third Mile High Conference on Nonassociative Mathematics (August 2013, Denver, CO). The purpose of this paper is twofold. First, we would like to review the technique developed in a series of papers for various classes of di-algebras and show how the same ideas work for tri-algebras. Second, we present a general approach to the definition of pre- and post-algebras which turns out to be equivalent to the construction...

Embedding of dendriform algebras into Rota-Baxter algebras

Vsevolod Gubarev, Pavel Kolesnikov (2013)

Open Mathematics

Similarity:

Following a recent work [Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. IMRN (in press), DOI: 10.1093/imrn/rnr266] we define what is a dendriform dior trialgebra corresponding to an arbitrary variety Var of binary algebras (associative, commutative, Poisson, etc.). We call such algebras di- or tri-Var-dendriform algebras, respectively. We prove in general that the operad governing the variety of di- or tri-Var-dendriform...