The lifespan of 3D compressible flow
Thomas C. Sideris (1991-1992)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Thomas C. Sideris (1991-1992)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Hiroshi Isozaki (1986)
Journées équations aux dérivées partielles
Similarity:
Vladimir Varlamov (2000)
Annales Polonici Mathematici
Similarity:
We consider the first initial-boundary value problem for the 2-D Kuramoto-Sivashinsky equation in a unit disk with homogeneous boundary conditions, periodicity conditions in the angle, and small initial data. Apart from proving the existence and uniqueness of a global in time solution, we construct it in the form of a series in a small parameter present in the initial conditions. In the stable case we also obtain the uniform in space long-time asymptotic expansion of the constructed...
Steven Schochet (2005)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.
Casella, E., Secchi, P., Trebeschi, P. (2002)
Portugaliae Mathematica. Nova Série
Similarity:
R. Temam (1974-1975)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Varlamov, Vladimir (2000)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Busuioc, V. (2002)
Portugaliae Mathematica. Nova Série
Similarity:
Mikulevicius, R., Pragarauskas, H. (2005)
Electronic Journal of Probability [electronic only]
Similarity:
Vito Lampret (2012)
Open Mathematics
Similarity:
An asymptotic approximation of Wallis’ sequence W(n) = Πk=1n 4k 2/(4k 2 − 1) obtained on the base of Stirling’s factorial formula is presented. As a consequence, several accurate new estimates of Wallis’ ratios w(n) = Πk=1n(2k−1)/(2k) are given. Also, an asymptotic approximation of π in terms of Wallis’ sequence W(n) is obtained, together with several double inequalities such as, for example, with .