The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Reconstruction phases for Hamiltonian systems on cotangent bundles.”

Liouville forms in a neighborhood of an isotropic embedding

Frank Loose (1997)

Annales de l'institut Fourier

Similarity:

A Liouville form on a symplectic manifold ( X , ω ) is by definition a potential β of the symplectic form - d β = ω . Its center M is given by β - 1 ( 0 ) . A normal form for certain Liouville forms in a neighborhood of its center is given.

Natural symplectic structures on the tangent bundle of a space-time

Janyška, Josef

Similarity:

In this nice paper the author proves that all natural symplectic forms on the tangent bundle of a pseudo-Riemannian manifold are pull-backs of the canonical symplectic form on the cotangent bundle with respect to some diffeomorphisms which are naturally induced by the metric.

Geometric quantization and no-go theorems

Viktor Ginzburg, Richard Montgomery (2000)

Banach Center Publications

Similarity:

A geometric quantization of a Kähler manifold, viewed as a symplectic manifold, depends on the complex structure compatible with the symplectic form. The quantizations form a vector bundle over the space of such complex structures. Having a canonical quantization would amount to finding a natural (projectively) flat connection on this vector bundle. We prove that for a broad class of manifolds, including symplectic homogeneous spaces (e.g., the sphere), such connection does not exist....