On the local well-posedness of the KP equations
Nikolay Tzvetkov (2000-2001)
Séminaire Équations aux dérivées partielles
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Nikolay Tzvetkov (2000-2001)
Séminaire Équations aux dérivées partielles
Similarity:
Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi (2007-2008)
Séminaire Équations aux dérivées partielles
Similarity:
Tomoeda, Kyoko (2011)
Advances in Mathematical Physics
Similarity:
Nikolay Tzvetkov (2000)
Journées équations aux dérivées partielles
Similarity:
We survey some recent results for the KP-II equation. We also give an idea for treating the “bad frequency interactions” of the bilinear estimates in the Fourier transform restriction spaces related to the KP-I equation.
Axel Grünrock (2010)
Open Mathematics
Similarity:
The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces defined by the norm . Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ . The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < . The results for r =...
Jerry L. Bona, S. M. Sun, Bing-Yu Zhang (2008)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Axel Grünrock, Mahendra Panthee, Jorge Drumond Silva (2009)
Annales de l'I.H.P. Analyse non linéaire
Similarity: