Displaying similar documents to “Canonical decomposition of catenation of factorial languages.”

Equivalence of Deterministic and Nondeterministic Epsilon Automata

Michał Trybulec (2009)

Formalized Mathematics

Similarity:

Based on concepts introduced in [14], semiautomata and leftlanguages, automata and right-languages, and langauges accepted by automata are defined. The powerset construction is defined for transition systems, semiautomata and automata. Finally, the equivalence of deterministic and nondeterministic epsilon automata is shown.

Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms

Marco Caminati (2011)

Formalized Mathematics

Similarity:

Second of a series of articles laying down the bases for classical first order model theory. A language is defined basically as a tuple made of an integer-valued function (adicity), a symbol of equality and a symbol for the NOR logical connective. The only requests for this tuple to be a language is that the value of the adicity in = is -2 and that its preimage (i.e. the variables set) in 0 is infinite. Existential quantification will be rendered (see [11]) by mere prefixing a formula...

The finite automata approaches in stringology

Jan Holub (2012)

Kybernetika

Similarity:

We present an overview of four approaches of the finite automata use in stringology: deterministic finite automaton, deterministic simulation of nondeterministic finite automaton, finite automaton as a model of computation, and compositions of finite automata solutions. We also show how the finite automata can process strings build over more complex alphabet than just single symbols (degenerate symbols, strings, variables).

Transition of Consistency and Satisfiability under Language Extensions

Julian J. Schlöder, Peter Koepke (2012)

Formalized Mathematics

Similarity:

This article is the first in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [17] for uncountably large languages. We follow the proof given in [18]. The present article contains the techniques required to expand formal languages. We prove that consistent or satisfiable theories retain these properties under changes to the language they are formulated in.

Minimal NFA and biRFSA languages

Michel Latteux, Yves Roos, Alain Terlutte (2009)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

In this paper, we define the notion of biRFSA which is a residual finate state automaton (RFSA) whose the reverse is also an RFSA. The languages recognized by such automata are called biRFSA languages. We prove that the canonical RFSA of a biRFSA language is a minimal NFA for this language and that each minimal NFA for this language is a sub-automaton of the canonical RFSA. This leads to a characterization of the family of biRFSA languages. In the second part of this paper, we define...

The Gödel Completeness Theorem for Uncountable Languages

Julian J. Schlöder, Peter Koepke (2012)

Formalized Mathematics

Similarity:

This article is the second in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [15] for uncountably large languages. We follow the proof given in [16]. The present article contains the techniques required to expand a theory such that the expanded theory contains witnesses and is negation faithful. Then the completeness theorem follows immediately.