Displaying similar documents to “Koszul DG-algebras Arising from Configuration Spaces.”

Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras

K.K. Abdurasulov, A.Kh. Khudoyberdiyev, M. Ladra, A.M. Sattarov (2021)

Communications in Mathematics

Similarity:

In this paper we give the description of some non-strongly nilpotent Leibniz algebras. We pay our attention to the subclass of nilpotent Leibniz algebras, which is called filiform. Note that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three disjoint families. We describe the pre-derivations of filiform Leibniz algebras for the first and second families and determine those algebras in the first two classes of filiform Leibniz algebras that are non-strongly...

Group Gradings on Free Algebras of Nilpotent Varieties of Algebras

Bahturin, Yuri (2012)

Serdica Mathematical Journal

Similarity:

2010 Mathematics Subject Classification: Primary 16W50, 17B70; Secondary 16R10. The main result is the classification, up to isomorphism, of all gradings by arbitrary abelian groups on the finitely generated algebras that are free in a nilpotent variety of algebras over an algebraically closed field of characteristic zero. The research was supported by an NSERC Discovery Grant #227060-09

On the characterisation of Mal'tsev and Jónsson-Tarski algebras

Jonathan D.H. Smith (2003)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

There are very strong parallels between the properties of Mal'tsev and Jónsson-Tarski algebras, for example in the good behaviour of centrality and in the factorization of direct products. Moreover, the two classes between them include the majority of algebras that actually arise 'in nature'. As a contribution to the research programme building a unified theory capable of covering the two classes, along with other instances of good centrality and factorization, the paper presents a common...

On split-by-nilpotent extensions

Ibrahim Assem, Dan Zacharia (2003)

Colloquium Mathematicae

Similarity:

Let A and R be two artin algebras such that R is a split extension of A by a nilpotent ideal. We prove that if R is quasi-tilted, or tame and tilted, then so is A. Moreover, generalizations of these properties, such as laura and shod, are also inherited. We also study the relationship between the tilting R-modules and the tilting A-modules.

Extremal properties for concealed-canonical algebras

Michael Barot, Dirk Kussin, Helmut Lenzing (2013)

Colloquium Mathematicae

Similarity:

Canonical algebras, introduced by C. M. Ringel in 1984, play an important role in the representation theory of finite-dimensional algebras. They also feature in many other mathematical areas like function theory, 3-manifolds, singularity theory, commutative algebra, algebraic geometry and mathematical physics. We show that canonical algebras are characterized by a number of interesting extremal properties (among concealed-canonical algebras, that is, the endomorphism rings of tilting...

Enveloping algebras of Malcev algebras

Murray R. Bremner, Irvin R. Hentzel, Luiz A. Peresi, Marina V. Tvalavadze, Hamid Usefi (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We first discuss the construction by Pérez-Izquierdo and Shestakov of universal nonassociative enveloping algebras of Malcev algebras. We then describe recent results on explicit structure constants for the universal enveloping algebras (both nonassociative and alternative) of the 4-dimensional solvable Malcev algebra and the 5-dimensional nilpotent Malcev algebra. We include a proof (due to Shestakov) that the universal alternative enveloping algebra of the real 7-dimensional simple...