Displaying similar documents to “Construction of Majorizing Measures, Bernoulli Processes and Cotype.”

Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small-noise limit

Samuel Herrmann, Julian Tugaut (2012)

ESAIM: Probability and Statistics

Similarity:

In the context of self-stabilizing processes, that is processes attracted by their own law, living in a potential landscape, we investigate different properties of the invariant measures. The interaction between the process and its law leads to nonlinear stochastic differential equations. In [S. Herrmann and J. Tugaut. 15 (2010) 2087–2116], the authors proved that, for linear interaction and under suitable conditions, there exists a unique symmetric limit measure associated to the set...

Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation

Nikolay Tzvetkov, Nicola Visciglia (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.

Infinitely divisible cylindrical measures on Banach spaces

Markus Riedle (2011)

Studia Mathematica

Similarity:

In this work infinitely divisible cylindrical probability measures on arbitrary Banach spaces are introduced. The class of infinitely divisible cylindrical probability measures is described in terms of their characteristics, a characterisation which is not known in general for infinitely divisible Radon measures on Banach spaces. Further properties of infinitely divisible cylindrical measures such as continuity are derived. Moreover, the classification result enables us to deduce new...

Can interestingness measures be usefully visualized?

Robert Susmaga, Izabela Szczech (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents visualization techniques for interestingness measures. The process of measure visualization provides useful insights into different domain areas of the visualized measures and thus effectively assists their comprehension and selection for different knowledge discovery tasks. Assuming a common domain form of the visualized measures, a set of contingency tables, which consists of all possible tables having the same total number of observations, is constructed. These...

Elementary examples of Loewner chains generated by densities

Alan Sola (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We study explicit examples of Loewner chains generated by absolutely continuous driving measures, and discuss how properties of driving measures are reflected in the shapes of the growing Loewner hulls.