Displaying similar documents to “On Squeezing and Flow of Energy for Nonlinear Wave Equations.”

On the nonlinear stabilization of the wave equation

Aissa Guesmia (1998)

Annales Polonici Mathematici

Similarity:

We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.

Shoaling of nonlinear steady waves: maximum height and angle of breaking

Franco, Sebastião Romero, Farina, Leandro

Similarity:

A Fourier approximation method is used for modeling and simulation of fully nonlinear steady waves. The set of resulting nonlinear equations are solved by Newton's method. The shoaling of waves is simulated based on comparisons with experimental data. The wave heights and the angles of breaking are analysed until the limit of inadequacy of the numerical method. The results appear quite close to those criteria predicted by the theory of completely nonlinear surface waves and contribute...

Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term

Doan Thi Nhu Quynh, Nguyen Huu Nhan, Le Thi Phuong Ngoc, Nguyen Thanh Long (2023)

Applications of Mathematics

Similarity:

We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable...