Displaying similar documents to “Algèbres de Maurer-Cartan et Holonomie”

Résidus des sous-variétés invariantes d'un feuilletage singulier

Daniel Lehmann (1991)

Annales de l'institut Fourier

Similarity:

Une formule de résidus est demontrée pour les classes caractéristiques de degré suffisamment grand du fibré normal à une sous variété lisse V d’une variété W , invariante relativement à un feuilletage avec singularités dans W . En particulier, dans le cas analytique complexe, et pour les feuilletages dont les feuilles sont de dimension complexe 1, les nombres de Chern du fibre normal à la sous-variété V sont calculés en termes de résidus de Grothendieck, par une formule qui généralise...

Feuilletages transversalement projectifs sur les variétés de Seifert

Thierry Barbot (2003)

Annales de l’institut Fourier

Similarity:

Soit M une variété de Seifert de groupe fondamental non virtuellement résoluble. Soit Φ un feuilletage de dimension 1 sur M , muni d’une structure projective réelle transverse. On suppose que Φ satisfait la propriété de relèvement des chemins, i.e., que l’espace des feuilles du relèvement de Φ dans le revêtement universel de M est séparé au sens de Hausdorff. On montre qu’à revêtements finis près, Φ est soit une fibration projective, soit un feuilletage géodésique convexe, soit un feuilletage horocyclique...

Une caractérisation du fibré transverse.

Tong Van Duc (1990)

Collectanea Mathematica

Similarity:

We prove that the Lie algebra of infinitesimal automorphisms of the transverse structure on the total space of the transverse bundle of a foliation is isomorphic to the semi-direct product of the Lie algebra of the infinitesimal automorphism of the foliation by the vector space of the transverse vector fields. The derivations of this algebra are entirely determined and we prove that this Lie algebra characterises the foliated structure of a compact Hausdorff foliation.

Sur les équations d'Halphen et les actions de SL2(C)

Adolfo Guillot (2007)

Publications Mathématiques de l'IHÉS

Similarity:

On étudie les aspects locaux et globaux des actions holomorphes de SL() sur les variétés complexes de dimension trois, à partir de l’étude des algèbres de Lie de champs de vecteurs qui engendrent une action uniforme. On décrit géométriquement et dynamiquement une famille de telles algèbres étudiée par Halphen vers la fin du XIXème siècle. On donne des formes normales pour les actions de SL() au voisinage des orbites unidimensionnelles. On étudie ensuite les compactifications équivariantes...