Displaying similar documents to “The canonical solution operator to aDOb∂aFOb restricted to spaces of entire functions”

Sums of an entire function in certain weighted L-spaces.

Bruno Brive (2003)

Publicacions Matemàtiques

Similarity:

We consider the functional equation f(z+σ) - f(z) = g(z) where σ is a complex number, f and g are entire functions of a complex variable z, with growth conditions. We prove the existence of certain types of solutions of this equation by an a priori estimate method in certain weighted L-spaces.

On an estimate for the norm of a function of a quasihermitian operator

M. Gil (1992)

Studia Mathematica

Similarity:

Let A be a closed linear operator acting in a separable Hilbert space. Denote by co(A) the closed convex hull of the spectrum of A. An estimate for the norm of f(A) is obtained under the following conditions: f is a holomorphic function in a neighbourhood of co(A), and for some integer p the operator A p - ( A * ) p is Hilbert-Schmidt. The estimate improves one by I. Gelfand and G. Shilov.

Characteristic Cauchy problems and solutions of formal power series

Sunao Ouchi (1983)

Annales de l'institut Fourier

Similarity:

Let L ( z , z ) = ( z 0 ) k - A ( z , z ) be a linear partial differential operator with holomorphic coefficients, where A ( z , z ) = j = 0 k - 1 A j ( z , z ' ) ( z 0 ) j , ord . A ( z , z ) = m > k and z = ( z 0 , z ' ) C n + 1 . We consider Cauchy problem with holomorphic data L ( z , z ) u ( z ) = f ( z ) , ( z 0 ) i u ( 0 , z ' ) = u ^ i ( z ' ) ( 0 i k - 1 ) . We can easily get a formal solution u ^ ( z ) = n = 0 u ^ n ( z ' ) ( z 0 ) n / n ! , bu in general it diverges. We show under some conditions that for any sector S with the opening less that a constant determined by L ( z , z ) , there is a function u S ( z ) holomorphic except on { z 0 = 0 } such that L ( z , z ) u S ( z ) = f ( z ) and u S ( z ) u ^ ( z ) as z 0 0 in S .