Displaying similar documents to “Semilinear wave equation on manifolds”

A Carleman estimates based approach for the stabilization of some locally damped semilinear hyperbolic equations

Louis Tebou (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

First, we consider a semilinear hyperbolic equation with a locally distributed damping in a bounded domain. The damping is located on a neighborhood of a suitable portion of the boundary. Using a Carleman estimate [Duyckaerts, Zhang and Zuazua, Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear); Fu, Yong and Zhang, SIAM J. Contr. Opt. 46 (2007) 1578–1614], we prove that the energy of this system decays exponentially to zero as the time variable goes to infinity. Second, relying on...

Remarks on weak stabilization of semilinear wave equations

Alain Haraux (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non negligible sub-region for at least one sign of the velocity, all solutions of the perturbed system converge weakly to 0 as time tends to infinity. We present here a simple and natural method of proof of this kind of property, implying as a consequence some recent very general results of Judith...

Weak solutions to the initial boundary value problem for a semilinear wave equation with damping and source terms

Petronela Radu (2008)

Applicationes Mathematicae

Similarity:

We show local existence of solutions to the initial boundary value problem corresponding to a semilinear wave equation with interior damping and source terms. The difficulty in dealing with these two competitive forces comes from the fact that the source term is not a locally Lipschitz function from H¹(Ω) into L²(Ω) as typically assumed in the literature. The strategy behind the proof is based on the physics of the problem, so it does not use the damping present in the equation. The...