Displaying similar documents to “The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot”

On the Leibniz-Mycielski axiom in set theory

Ali Enayat (2004)

Fundamenta Mathematicae

Similarity:

Motivated by Leibniz’s thesis on the identity of indiscernibles, Mycielski introduced a set-theoretic axiom, here dubbed the Leibniz-Mycielski axiom LM, which asserts that for each pair of distinct sets x and y there exists an ordinal α exceeding the ranks of x and y, and a formula φ(v), such that ( V α , ) satisfies φ(x) ∧¬ φ(y). We examine the relationship between LM and some other axioms of set theory. Our principal results are as follows: 1. In the presence of ZF, the following are equivalent: (a)...

Hyperplanes in matroids and the axiom of choice

Marianne Morillon (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that in set theory without the axiom of choice ZF, the statement sH: “Every proper closed subset of a finitary matroid is the intersection of hyperplanes including it” implies AC fin , the axiom of choice for (nonempty) finite sets. We also provide an equivalent of the statement AC fin in terms of “graphic” matroids. Several open questions stay open in ZF, for example: does sH imply the axiom of choice?

Complexity of the axioms of the alternative set theory

Antonín Sochor (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

If is a complete theory stronger than Fin such that axiom of extensionality for classes + + ( X ) Φ i is consistent for 1 i k (each alone), where Φ i are normal formulae then we show + ( X ) Φ 1 + + ( X ) Φ k + scheme of choice is consistent. As a consequence we get: there is no proper Δ 1 -formula in + scheme of choice. Moreover the complexity of the axioms of is studied, e.gẇe show axiom of extensionality is Π 1 -formula, but not Σ 1 -formula and furthermore prolongation axiom, axioms of choice and cardinalities...

The gap between I₃ and the wholeness axiom

Paul Corazza (2003)

Fundamenta Mathematicae

Similarity:

∃κI₃(κ) is the assertion that there is an elementary embedding i : V λ V λ with critical point below λ, and with λ a limit. The Wholeness Axiom, or WA, asserts that there is a nontrivial elementary embedding j: V → V; WA is formulated in the language ∈,j and has as axioms an Elementarity schema, which asserts that j is elementary; a Critical Point axiom, which asserts that there is a least ordinal moved by j; and includes every instance of the Separation schema for j-formulas. Because no instance...

[unknown]

M. Jelić (1990)

Matematički Vesnik

Similarity:

When is 𝐍 Lindelöf?

Horst Herrlich, George E. Strecker (1997)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) is a Lindelöf space, (2) is a Lindelöf space, (3) is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of is separable, (6) in , a point x is in the closure of a set A iff there exists a sequence in A that converges to x , (7) a function f : is continuous at a point x iff f is sequentially continuous...