Displaying similar documents to “Flux in axiomatic potential theory. II. Duality”

Perturbation of harmonic structures and an index-zero theorem

Bertram Walsh (1970)

Annales de l'institut Fourier

Similarity:

In the framework of an axiomatic theory of sheaves of “harmonic” functions, a notion of perturbation of these sheaves is introduced which corresponds to the replacement of the operator Δ by an operator Δ + f , in the classical situation. The “harmonic” functions with which the paper is concerned are assumed to satisfy certain hypotheses (weaker than the axioms of Bauer); it is shown that the perturbed harmonic functions also satisfy these hypotheses. Moreover, the results obtained imply that...

The Martin boundaries of equivalent sheaves

John C. Taylor (1970)

Annales de l'institut Fourier

Similarity:

The Martin compactification of X defined by a Brelot sheaf H 1 satisfying proportionality is shown to be the same as for H 2 if the sheaves agree outside a compact set. Minimal points coincide and hence S 1 + and S 2 + are isomorphic topological cones. Nakai’s result on the extension to X of a function harmonic outside a compact set is extended to Bauer’s theory. The connected components of the Martin boundary Δ correspond to the ends of X which are related to direct decomposition of the cone H + . ...

Biharmonic morphisms

Mustapha Chadli, Mohamed El Kadiri, Sabah Haddad (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( X , ) and ( X ' , ' ) be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from ( X , ) to ( X ' , ' ) is a continuous map from X to X ' which preserves the biharmonic structures of X and X ' . In the present work we study this notion and characterize in some cases the biharmonic morphisms between X and X ' in terms of harmonic morphisms between the harmonic spaces associated with ( X , ) and ( X ' , ' ) and the coupling kernels of them.

Axiomatic theory of harmonic functions. Balayage

Nicu Boboc, Corneliu Constantinescu, A. Cornea (1965)

Annales de l'institut Fourier

Similarity:

Dans une axiomatique des fonctions harmoniques un peu plus générale que celle de H. Bauer, on démontre les relations suivantes : R s + t A = R s A + R t A , R s A B + R s A B R s A + R s B , A n A , S n s R s n A n R s A , A , B , A n , (resp. s , t , s n ) sont des ensembles (resp. fonctions hyperharmoniques non-négatives) arbitraires. Les mêmes relations sont valables pour R ^ . On démontre aussi que la relation * s d μ A = * R ^ s A d μ a lieu si l’espace de base a une base dénombrable ou si l’axiome D de M. Brelot est satisfait,...

A maximal regular boundary for solutions of elliptic differential equations

Peter Loeb, Bertram Walsh (1968)

Annales de l'institut Fourier

Similarity:

Soit 𝒜 une classe harmonique de Brelot, définie sur W . Il est donné un critère de régularité en termes de barrières, pour les points d’une frontière idéale. Soit un sous-treillis banachique de ℬ𝒜 W . Si 𝒜 est hyperbolique, la frontière idéale compactifiante déterminée par contient une “frontière harmonique” Γ qui satisfait le critère de régularité et 𝒞 R ( Γ ) . Entre autres applications, on a la théorie des frontières de Wiener et Royden et des comparaisons de classes harmoniques.