The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Some remarks on convolution equations”

On tempered convolution operators

Saleh Abdullah (1994)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we show that if S is a convolution operator in S ' , and S * S ' = S ' , then the zeros of the Fourier transform of S are of bounded order. Then we discuss relations between the topologies of the space O c ' of convolution operators on S ' . Finally, we give sufficient conditions for convergence in the space of convolution operators in S ' and in its dual.

A comparison on the commutative neutrix convolution of distributions and the exchange formula

Adem Kiliçman (2001)

Czechoslovak Mathematical Journal

Similarity:

Let f ˜ , g ˜ be ultradistributions in 𝒵 ' and let f ˜ n = f ˜ * δ n and g ˜ n = g ˜ * σ n where { δ n } is a sequence in 𝒵 which converges to the Dirac-delta function δ . Then the neutrix product f ˜ g ˜ is defined on the space of ultradistributions 𝒵 ' as the neutrix limit of the sequence { 1 2 ( f ˜ n g ˜ + f ˜ g ˜ n ) } provided the limit h ˜ exist in the sense that N - l i m n 1 2 f ˜ n g ˜ + f ˜ g ˜ n , ψ = h ˜ , ψ for all ψ in 𝒵 . We also prove that the neutrix convolution product f * g exist in 𝒟 ' , if and only if the neutrix product f ˜ g ˜ exist in 𝒵 ' and the exchange formula F ( f * g ) = f ˜ g ˜ is then satisfied.

On the range of convolution operators on non-quasianalytic ultradifferentiable functions

Jóse Bonet, Antonio Galbis, R. Meise (1997)

Studia Mathematica

Similarity:

Let ( ω ) ( Ω ) denote the non-quasianalytic class of Beurling type on an open set Ω in n . For μ ( ω ) ' ( n ) the surjectivity of the convolution operator T μ : ( ω ) ( Ω 1 ) ( ω ) ( Ω 2 ) is characterized by various conditions, e.g. in terms of a convexity property of the pair ( Ω 1 , Ω 2 ) and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator S μ : D ω ' ( Ω 1 ) D ω ' ( Ω 2 ) between ultradistributions of Roumieu type whenever...

Construction and analysis of some convolution algebras

Arne Beurling (1964)

Annales de l'institut Fourier

Similarity:

À une famille Ω de fonctions positives ω sur un groupe G abélien localement compact, on associe l’ensemble A 2 des fonctions qui sont de carré sommable sur G par rapport à d x / ω ( x ) pour au moins un ω Ω . Sous certaines conditions simples, portant sur Ω , c’est une algèbre de convolution, contenue dans L 1 ( G ) . On étudie particulièrement le cas G = droite réelle, Ω = ensemble des fonctions paires, sommables, décroissantes sur ] 0 , [ . Une caractérisation explicite de A ˜ (ensemble des transformées de Fourier des f A )...

On functions whose translates are independent

Ralph E. Edwards (1951)

Annales de l'institut Fourier

Similarity:

Ce travail est l’étude de divers cas particuliers d’un problème nouveau, semble-t-il, concernant les translatées de fonctions ou de distributions sur un groupe. Soit E un espace vectoriel topologique de fonctions ou de distributions sur un groupe abélien G localement compact ; E est supposé invariant par les translations a f a ( x ) = f ( x + a ) ( f E , a G ) . Si f E et si A est un sous-ensemble non vide de G , I ( f , A ) = I ( f , A , E ) désigne le sous-espace vectoriel fermé de E engendré par les translatées f a de f avec a A . On dira qu’une f E a ses...