Displaying similar documents to “Construction of the solutions of boundary value problems for the biharmonic operator in a rectangle”

On solutions of differential equations with ``common zero'' at infinity

Árpád Elbert, Jaromír Vosmanský (1997)

Archivum Mathematicum

Similarity:

The zeros c k ( ν ) of the solution z ( t , ν ) of the differential equation z ' ' + q ( t , ν ) z = 0 are investigated when lim t q ( t , ν ) = 1 , | q ( t , ν ) - 1 | d t < and q ( t , ν ) has some monotonicity properties as t . The notion c κ ( ν ) is introduced also for κ real, too. We are particularly interested in solutions z ( t , ν ) which are “close" to the functions sin t , cos t when t is large. We derive a formula for d c κ ( ν ) / d ν and apply the result to Bessel differential equation, where we introduce new pair of linearly independent solutions replacing the usual pair J ν ( t ) , Y ν ( t ) . We show the concavity of c κ ( ν ) for...

Explicit estimation of error constants appearing in non-conforming linear triangular finite element method

Xuefeng Liu, Fumio Kikuchi (2018)

Applications of Mathematics

Similarity:

The non-conforming linear ( P 1 ) triangular FEM can be viewed as a kind of the discontinuous Galerkin method, and is attractive in both the theoretical and practical purposes. Since various error constants must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their theoretical upper bounds and some computational results. In particular, the Babuška-Aziz maximum angle condition is required just as in the case of the conforming P 1 triangle. Some...

Finite element analysis for a regularized variational inequality of the second kind

Zhang, Tie, Zhang, Shuhua, Azari, Hossein

Similarity:

In this paper, we investigate the a priori and the a posteriori error analysis for the finite element approximation to a regularization version of the variational inequality of the second kind. We prove the abstract optimal error estimates in the H 1 - and L 2 -norms, respectively, and also derive the optimal order error estimate in the L -norm under the strongly regular triangulation condition. Moreover, some residual–based a posteriori error estimators are established, which can provide the...

On the angles between certain arithmetically defined subspaces of 𝐂 n

Robert Brooks (1987)

Annales de l'institut Fourier

Similarity:

If { v i } and { w j } are two families of unitary bases for C n , and θ is a fixed number, let V n and W n be subspaces of C n spanned by [ θ · n ] vectors in { v i } and { w j } respectively. We study the angle between V n and W n as n goes to infinity. We show that when { v i } and { w j } arise in certain arithmetically defined families, the angles between V n and W n may either tend to 0 or be bounded away from zero, depending on the behavior of an associated eigenvalue problem.

Regularity properties of the equilibrium distribution

Hans Wallin (1965)

Annales de l'institut Fourier

Similarity:

Soit F un sous-ensemble compact de R m ayant des points intérieurs et soit μ α F la distribution d’équilibre sur F de masse totale 1 par rapport au noyau r α - m avec 0 &lt; α &lt; 2 pour m 2 , et 0 &lt; α &lt; 1 pour m = 1 . La restriction de μ α F à l’intérieur de F est absolument continue et a pour densité f α F . On donne une formule explicite pour f α F et, pour une classe générale d’ensembles F , on démontre que f α F , définie en réalité sur un ensemble de mesure de Lebesgue nulle, croît comme la distance à la frontière F de F élevée à la puissance...